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Abstract

Denial of service is becoming a growing concern. As computer sys-

tems communicate more and more with others that they know less and

less, they become increasingly vulnerable to hostile intruders who may

take advantage of the very protocols intended for the establishment and

authentication of communication to tie up resources and disable servers.

This paper shows how some principles that have already been used to make

cryptographic protocols more resistant to denial of service by trading o�

the cost to defender against the cost to the attacker can be formalized

based on a modi�cation of the Gong-Syverson fail-stop model of crypto-

graphic protocols, and indicates the ways in which existing cryptographic

protocol analysis tools could be modi�ed to operate within this formal

framework. We also indicate how this framework could be extended to

protocols that do not make use of strong authentication.
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1 Introduction

Denial of service is becoming a growing concern. As computer systems commu-
nicate more and more with others that they know less and less, they become
increasingly vulnerable to hostile intruders who may take advantage of the very
protocols intended for the establishment and authentication of communication
to tie up our resources and disable our servers. Since these attacks occur before
parties are authenticated to each other, it is not possible to rely upon enforce-
ment of the appropriate access control policy for protection (as is recommended
in the classic work of Gligor and Millen in [7, 18, 19]). Instead the defenses, as
much as possible, must be built into the protocols themselves.

One of the most common and devastating types of denial of service attack
is the resource exhaustion attack, in which an attacker, by initiating a large
number of instances of a protocol, causes a victim to waste resources. Although
the victim can thwart this attack by refusing the communicate with the attacker
once the source of its message is known, this defense can be circumvented, or at
least made more di�cult, by disguising the origin of the requests. For example,
the SYN attack on TCP/IP is a classic example of this type of attack. The SYN
attack works by having an attacker initiate a number of instances of the protocol
but fail to complete them. The victim exhausts its resources maintaining state
information until timeout. Since the veri�cation of the origin of messages in
TCP/IP is based on sequence numbers that are easily forged, the victim cannot
easily identify the attacker even when it is aware it is under attack.

There are a number of defenses against attacks like this. One is to reduce
the cost to the potential victim (from now on called the defender) of engaging
in the protocol. Another is to increase the resources of the defender. A third
is to introduce some sort of authentication so that a defender could at least tell
where an attack is coming from.

However, using authentication introduces denial of service risks of its own.
Suppose, for example, that a protocol requires the defender to verify mes-
sages signed with digital signatures. Veri�cation of such signatures is relatively
resource-consuming, and an attacker could introduce denial of service by launch-
ing a large number of messages with bogus digital signatures, which the defender
would then waste its resources verifying. Since the signatures were bogus, there
would o�er no assistance to the defender in verifying the origin of the attack.

This problem has not been ignored by protocol designers, and there have
been a number of proposals to reduce the denial-of-service risks involved in par-
ticipating in a protocol that uses authentication, in particular strong authen-
tication. These usually involve using weak authentication when the protocol
is initiated, but stronger authentication as it completes. This, for example, is
the approach followed by Kent et al. in [11], which applies these principals in
a systematic way to design security enhancements for several internet routing
protocols. The idea is that, even when it is within an attacker's capacities to
break the weak authentication, it will still cost it a certain amount of e�ort
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which may make it infeasible, or at least more di�cult, for it to practice the
multiple spoo�ng required to mount an e�ective denial of service attack. Thus
the protocol provides protection against an attacker spending minimal resources
in its initial stages without leaving itself vulnerable to denial of service attacks
that take advantage of strong authentication, while still ultimately protecting
the protocol against spoo�ng by an attacker willing to spend greater resources.
This does not leave the protocol completely invulnerable against a denial of
service attack by a strong opponent, but it increases the cost to an attacker.
For example, Photuris' use of cookies [10], in which a light-weight authenticator
is attached to the beginning of each message and must be veri�ed before any
further message processing is done, is a classic example of this kind of approach.
Cookies have since become a popular defense against denial of service in a num-
ber of protocols, including the version of TCP/IP used in Linux [2], where they
are used to defend against the SYN attack that we described earlier.

Techniques like these assume an implicit model of the interaction between
the attacker and defender. The attacker's goals are two fold: �rst to cause the
defender to waste its resources by interacting with the attacker, and secondarily
to keep the defender from learning its identity, since if it could, it could protect
itself against further attacks by refusing to to engage with further communi-
cation with the defender. The defender is assumed to have bounded resources
that could possibly be exhausted by a clever attacker. The attacker may or
may not have bounded resources, and may or may not have resources greater
than the defender, but there is assumed to be some level of resource expenditure
beyond which the attack is considered to be di�cult enough so that at least the
likelihood of widespread attack is reduced.

Formal methods are one good way of addressing problems involving a lot
of complex information that must be carefully evaluated. And indeed, formal
methods have already been applied with great success in evaluating whether
or not cryptographic protocols satisfy their authentication and secrecy require-
ments. Moreover, the underlying process, showing that certain authentication
goals are achieved in the face of attack by an intruder expending a certain
amount of e�ort, is similar to that used to show that a protocol satis�es its au-
thentication requirements. Thus it should be possible to apply many of the tools
and techniques that have been developed for the veri�cation of authentication
properties to the analysis of denial of service. In this paper we provide a frame-
work for evaluating a protocol for resistance to denial of service attacks involving
resource exhaustion in a way that is intended to allow us to make maximal use
of these tools. Although it is most applicable to cryptographic protocols, which
use the most expensive form of authentication, it can be applied to any protocol
that uses authentication, weak or strong, to protect against denial of service.

This framework extends our earlier model described in [16] by expanding
the model of an intruder's capabilities is to include the cost of an action to
the intruder as well as a list of actions of which we assume it to be capable.
This allows us to model, not only the tradeo� between the cost to the defender
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and the abilities of an attacker to implement di�erent subsets of the Dolev-Yao
model, as was done in the earlier paper, but also to compare the cost to the
attacker directly with the cost of the defender, whenever this is possible.

The remainder of the paper is organized as follows. In Section 2 we motivate
and present the framework and apply it to an example. In Section 3 we discuss
the ways in which existing security protocol analysis tools and methods could
be modi�ed to verify protocols within this framework. Section 4 concludes the
paper.

2 The Framework

2.1 Motivation

In this section we describe the basic reasoning that underlies our framework,
and the motivation for making the choices that we did.

Our construction of the framework begins with the observation that any
point at which during a protocol execution at which a responder may accept a
bogus message as genuine could be used to launch a denial of service attack.
However, it is not enough for the attacker simply to have the ability to pass o� a
bogus message as genuine. It also must be the case that the cost to the defender
of accepting the message is non-trivial, and that the cost to the attacker is small
enough in relation to its total resources that it �nds the attack worth its e�ort.
This means, �rst of all, that we need the capability of measuring cost to the
attacker and cost to the defender.

There are a number of problems we must address when we model costs to
attacker and defender. First of all, there is the problem of assigning and compar-
ing costs of engaging in individual actions such as computing digital signatures,
storing data, impersonating principals, etc. Di�erent events may have costs that
are not directly comparable. For example, the cost of computing a digital signa-
ture may not be directly comparable to the cost of storing a portion of a message
for later reference, since they may use di�erent resources. Moreover, what we
may really be interested is not the raw cost in terms of memory or cycles used,
but the ratio of cost to available resources. Finally, the actions available to
an intruder may be di�erent from those available to the defender; for example,
the intruder, besides being able to perform the actions necessary to execute the
protocol may also have the capability of impersonating principals, intercepting
messages, and, in some instances, breaking cryptographic algorithms.

We may also need a way of computing the cost of several actions over time.
When a principal participates in a protocol or accepts a message, it generally
performs a sequence of actions instead of just one. What is the best way of
computing the total cost of these actions when di�erent actions may be using
di�erent resources?

Since we are merely developing a framework for possible models, not trying
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to develop any speci�c model, so we do not need to solve this problem right
away. However, we do not want to rule out any possible solutions, so we choose
the most general structure that appears to be compatible with our needs. We
will assume that there is a mapping from the set of possible protocol actions
to a monoid with operator + which enjoys a partial order so that the sum of
any two elements a and b dominates a and b. This monoid will be the set of
possible costs, or cost set.

Once we have decided on a cost set and mapping, we need to decide over
what sequence of operations we want to compute the cost. In order to do this,
we will assume that there are two ways in which a defender could be caused to
waste resources. One way would be by participating in a bogus instance of the
protocol, up to the point at which an attack is detected. In this case, the cost of
participating in the protocol for both attacker and defender must be the cost of
engaging in the entire protocol up to the point at which the defender detects an
error or the attacker stops participating. Another way would be in processing
a bogus message inserted by the attacker into an ongoing protocol execution,
which may or may not be legitimate. Assuming that the message contains an
error, it could be replayed several times, until the defender times out. In this
case the cost to the attacker is the cost of creating and inserting the message,
while the cost to the defender is the cost of processing the bogus message up to
the point at which it detects the error.

Once we have decided how to assign and compute costs, we still need to be
able the characterize an attack on a protocol. This is not a trivial problem.
There have been a number of di�erent proposals for such characterizations.
They generally fall into two camps: conservative models that require the in-
truder to have essentially no e�ect on a successful protocol execution, and more
exible models that allow the protocol analyst to set speci�c security goals. It
is clear that in our case we are interested in the most conservative model pos-
sible, since it is possible for an intruder to use any deviation as a hook for a
denial of service attack, even if it does not lead to violation of a protocol goal
such as secrecy or authentication of keys. As a matter of fact, it is possible
for any deviation to be used as a hook for denial of service even if it does not
lead to a successful protocol execution. For this reason we need a de�nition of
security that governs the behavior of protocols as they execute, not only after
they terminate. Fortunately, such a model already exists: Gong and Syverson's
fail-stop model [9].

Briey, a protocol is fail-stop if any bogus message (that is, a replay or a
message manufactured by the intruder) can be detected, and the protocol halts
upon detection. Fail-stop protocols have some of the desirable features of a
denial-of-service-resistant protocol. However, in order to achieve the fail-stop
property, they must make use of strong authentication right from the beginning.
This makes fail-stop protocols potentially vulnerable to denial of service attacks
in which the target is forced to use up resources verifying bogus messages. Thus
we need to modify our concept of fail-stop in order to make it applicable to our
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needs. However, we will do so in the manner we suggested earlier, by modifying
our notion of an intruder's capability and introducing the notion of the cost to
an intruder of its performing various activities.

We do this in two stages. First of all, we modify the notion of fail-stop
by extending it to any action taken by a principal, not just the acceptance of a
message. We can now de�ne a function � from actions in a protocol to costs. We
can then say that a protocol is fail-stop with respect to �, if a principal cannot
be tricked into engaging in a protocol up to and including action A unless the
attacker expends an e�ort of more than �(A). We are now in a state in which we
can evaluate a protocol's resitance to denial of service. This proceeds roughly
as follows (for the sake of clarity we omit some of the details).

We estimate the cost to the principal of engaging in all actions in a protocol
up to and including A by adding their costs, and we compare this cost to �(A).
If �(A) is trivial (from the point of view of the attacker) in comparison with the
cost of engaging in the events up to and including A (from the point of view of
the defender), then we can judge the protocol insecure against denial of service
attacks. If the reverse is true for all actions A that a defender may engage in,
then we can judge the protocol secure. Therey may also be gray areas in which
neither �(A) nor the cost of engaging in all actions up to A are trivial in relation
to the other, and a closer look may be necessary.

The rest of this section will be organized as follows. In Section 2.2 we
introduce the protocol that we will use as an illustrative example throughout
this section: the Station-to-Station protocol of Di�e, van Oorschot, andWiener.
In Section 2.3 we introduce our notation for specifying protocols such that each
action is made explicit, and we show this notation can be used to describe the
desired behavior of a protocol. In Section 2.4 we introduce the notion of cost
and show how costs of protocol executions and are computed. In Section 2.5 we
introduce an informal intruder model and show how costs of intruder actions
are computed. In Section 2.6 we introduce the notion of a fail-stop protocol,
and show how we modify it to meet our needs. In that section we also introduce
the notion of tolerance relation, which can be used to model our estimate of the
risk to a defender of being tricked into engaging in the protocol, and show how
the tolerance relation and the modi�ed fail-stop model can be used to analyze
resistance to resource exhaustion attacks.

2.2 The Station to Station Protocol

The Station to Station protocol [4] is a protocol that was makes use of the
Di�e-Hellman protocol together with digital signatures in order to exchange
and authenticate keys between two principals. It was designed with message
e�ciency rather than resistance to denial of service in mind, and thus makes an
interesting case study for our analysis.

We assume that two principals share a common modulus P and a generator
� of the multiplicative group ofGF(P). The protocol consists of three messages:
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1. A! B : �XA

A raises � to a secret value XA and sends it to B.

2. B ! A : �XB ; EK(SB(�
XB ; �XA ))

B computes the key K = �XA
XB

= �XA�XB . It then digitally signs �XB

and �XA , and encrypts the result with K. It then sends this, together
with the key half �XB to A.

3. A! B : EK(SA(�
XA ; �XB ))

A computes K = �XB
XA == �XA�XB . It uses that key to decrypt the

message. It veri�es that that the decrypted message contains B's signa-
ture on �XB and �XA . It then computes a similar signed and encrypted
message and sends it to B. Since B also knows K, it can decrypt the
message and verify the signature as well.

As we can see, there are some obvious places where this protocol is open to
resource exhaustion attacks. For example, when B receives the �rst message
from A, it starts to expend resources generating a Di�e-Hellman key and com-
puting signatures, even though it cannot yet be sure that the message came
from A. As we shall see, our analysis will uncover some other vulnerabilities
as well, along with some places where the protocol is not as open to denial of
service attacks as might �rst appear.

2.3 Alice-and-Bob Speci�cations

In this section we introduce our notation for cryptographic protocols, which
we will also use to specify correctness properties. We will be making use of
the popular \Alice-and-Bob" speci�cation style. This has been criticized as
confusing the description of what should happen with what actually does happen
[8]. But in this case, a description of what does happen that can be made to
correspond to a description of what should happen is exactly what we want, so
much so that we are led to a formal de�nition of what we will call annotated
Alice-and-Bob speci�cations.

De�nition 1 An Alice-and-Bob speci�cation is a sequence of statements of the
form A ! B :M .

Since we are interested in producing a framework in which existing models
can be integrated rather than a model itself, we will not attempt to introduce a
syntax or semantics here, except to note that A and B are variables correspond-
ing to names of communicating principals andM corresponds to a message sent
between them.

Since we are interested in how messages are processed, as well as what mes-
sages are sent, we need to annotate our Alice-and-Bob speci�cations to include
message processing steps.
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De�nition 2 An annotated Alice-and-Bob speci�cation is a sequence of state-
ments of the form A ! B : T1; :::; Tk k M k O1; :::; On. We refer to the Ti as
the operations performed by A and the Oj as the operations performed by B.

The sequence T1; :::; Tk preceding the message in an annotated Alice-and-
Bob speci�cation represents the sequence of operations performed by A in pro-
ducing M , while the sequence O1; :::; On represents the sequence of operations
performed by B in processing and verifying M . We now look at the make-up
of a line in an Alice-and-Bob protocol more closely.

De�nition 3 Let L = A ! B : T1; :::; Tk k M k O1; :::; On be a line in an
annotated Alice-and-Bob speci�cation. We say that X is an event occurring in
L if

1. X is one of the Ti or Oj , or;

2. X is `A sends M to B' or `B receives M' from A'.

We say that the events T1; :::; Tk and `A sends M to B' occur at A and the
events `B receives N from A', O1; :::; On occur at B. There are three types of
events: normal events (which include the send and receive events), veri�cation
events (also called veri�cation operations), and accept events. Normal events
can occur at either sender or receiver. Veri�cation events occur only at the
receiver. The event On is a reserved event called the accept event.

Note that the M sent by A is not necessarily the N received by B. This is
intentional, since we will assume that the message N may have been created by
a hostile intruder, and so will not necessarily be the same as M . As a matter of
fact, if may be possible for B to receive N from A without A every having sent
any M to B at all.

Briey, the events, in sequence, correspond to creating a message, sending a
message, receiving a message, processing a message, and accepting a message.
The motivation for the di�erent types of events is as follows. A normal event
represents the operations performed that can have only one outcome, success.
After completing a normal event, a principal always moves on to the next event,
if any. A veri�cation event has two possible outcomes, success or failure. If the
event succeed, the principal performing it moves onto the next event. If the
event fails, the principal halts. An accept event describes a principal's deciding,
after, successfully completing all the message process events, that the message
is genuine and it is ready to move on to the next stage.

We do not prescribe any particular notation for events, but for the purposes
of this paper we will denote them by atomic symbols. Events that describe the
same operation (e.g. two digital signature veri�cations) will be di�erentiated
by subscripts.

For example, consider the case in which A computes a digital signature over
B's name and a nonce, and sends the result to B, together with its own name
and B's. The resulting annotated speci�cation would look like this:
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A ! B :
computenonce1; storenonce1; storename1; sign1 k
A;B; SA(B;NA)) k
checkname2; storenonce2; storename2; checksig1;

accept1
where computenonce denotesA's computing a nonce, storenonce and storename
denote A (respectively, B)s storing its nonce and B's (respectively, A's), name
for future reference, sign denotes A's computing a digital signature, checkname
denotes the checking for the presence of B's name, and checksig denotes the
checking of A's digital signature.

We now show how this notation could be used to specify the Station-to-
Station protocol. Some of the obvious operations used are exponentiation (which
we will denote by exp), digital signatures (sign), veri�cation of digital signatures
(checksig), encryption (encrypt) and decryption (decrypt). Some of the less ob-
vious are storing information (storename, storenonce), looking up information
(retrievenonce, checkname). We should also include the use of pre-calculated
exponentiated values, which represent a di�erent use of resources than expo-
nentiation in real time.

Once we have determined the various possible events, the speci�cation ap-
pears as follows:

1. A! B : preexp1; storename1 k
�XA k
storenonce1; storename2; accept1:

2. B ! A :
preexp1; sign1; exp1; encrypt1 k
�XB ; EK(SB(�

XB ; �XA)) k
checkname1; retrievenonce1; exp2; decrypt1;

checksig1; accept2:

3. A! B :
sign2; encrypt2 k
EK(SA(�

XA ; �XB )) k
checkname2; retrievenonce2; decrypt2;

checksig2; accept4:

Although we do not attempt to give a formal semantics for Alice-and-Bob
speci�cations, we do need to be precise about the intended and actual order in
which events occur. For this, we use the notion of a desirably-precedes relation,
which is similar to the notion used in Gong and Syverson's fail-stop model,
and like theirs, is based on Lamport's causally-precedes relation [12]. The only
di�erence between our notion and Lamport's is that Lamport was dealing with
a situation in which, although messages could be delayed or lost, they were not
spoofed, redirected, or altered by a hostile intruder. Thus, Lamport used the
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notion of causally-before to describe what actually happened in his environment,
while we will merely use it to describe what we would like to happen in our
environment.

For motivation, we �rst give Lamport's de�nition:

De�nition 4 Let S be a system of distributed processes that communicate by
sending messages. Let E be a temporally ordered sequence of events in S, where
E consists of internal events, sending of messages, and receiving of messages.
If a and b are two events from E, then b is causally-after a if:

1. a and b occur at the same process, and a precedes b;

2. a is the sending of a message by one process, and b is the receiving of the
same message by another process, or;

3. there is an event c such that c is causally-after a and b is causally-after c.

We say that E1 is causally-after E2 if E2 causally-precedes E1.
We note that notions very similar to Lamport's have found fruitful applica-

tion in the analysis of cryptographic protocols, most notably in the de�nition
of strand spaces [6]. However, for our purposes, we will need something a lit-
tle di�erent. An Alice-and-Bob speci�cation of a cryptographic protocol can
be thought of as giving of a requirements speci�cation in terms of what events
should causally-precede others. We thus de�ne desirably-precedes (or desirably-
after), as follows:

De�nition 5 1. If A ! B : R1; :::; Rm k M k O1; :::; On appears in the
speci�cation then the event in which B receives M 0 desirably-precedes any
of the Oi, and Oi desirably-precedes any of the Oj for which i < j;

2. If A ! B : R1; :::; Rm k M k O1; :::; On appears then any Ri desirably-
precedes the event in which A sends M and Ri desirably-precedes any of
the Rj whenever i < j;

3. If A ! B : R1; :::; Rm k M k O1; :::; On precedes B ! Y : S1; :::; Sp k
N k T1; :::; Tk then On desirably-precedes S1;

4. If A ! B : R1; :::; Rm k M k O1; :::; On appears then the event in which
A sends M to B desirably-precedes the event in which B receives M from
A, and;

5. If E1 desirably-precedes E2 and E2 desirably-precedes E3 then E1 desirably-
precedes E3.

Note that that in the de�nition of desirably-precedes, unlike our de�nition
of events, we do require that the message received by B in the receive event
corresponding to A ! B :M be the same as the M sent by A. This is because
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we are now describing what should happen when the protocol does proceed
according to plan.

An Alice-and-Bob speci�cation can be used together with the desirably-
precedes relation to specify both the desired and actual behavior of a protocol.
To understand how to do this, we need some notion of a semantics for such
speci�cations. In the interest of generality, we avoid giving a formal semantics,
but we provide the following informal semantics. This will be not only be used
to give us a better idea of how to apply annotated Alice-and-Bob speci�cations,
but we will also �nd it helpful in the de�nition of fail-stop protocols.

We begin by assuming that an annotated Alice-and-Bob speci�cation cor-
responds to a set of programs, one for each principal variable described in the
speci�cation. Multiple copies of the programs may exist, corresponding to dif-
ferent instantiation of the principal variables, and these copies may be running
concurrently. We may also assume that more than one copy may exist for the
same instantiations of the principal variables, and these copies may also be
running concurrently, allowing us to model the same principals taking part in
multiple sessions. Each program corresponding to to a principal A can be bro-
ken down into a sequence of program fragments corresponding to the events
engaged in by A. Program fragments corresponding to events engaged in by
the same principal in the same copy of a program are assumed to execute in an
order according to the desirably-precedes relation imposed by the speci�cation,
but no other assumption is made about the order of execution. In particular,
there is no assumed ordering relation between the fragments corresponding to
the sending and the receiving of a message.

We also assume that each program fragment has an output which can be
either \success" or \failure". If the output is \success", the program proceeds
to the next fragment. If the outcome is \failure", the program halts. Normal
and accept events always output \success", while veri�cation events can output
\success" or \failure."

We model communication between programs as follows. The event \A sends
M to B" corresponds to A placing M on a communication channel between A

and B. When this happens, on of two things can occur. Either M is sent to
B along the channel, or it is removed by an attacker. Likewise, the event \B
receives M 0 from A" corresponding to A's send event describes B receiving a
message along the channel between A and B. This could either be the genuine
messageM sent by A, or another message place on the channel by the attacker.
We leave the discussion of our assumptions about how the attacker creates and
inserts messages for Section 2.5.

Thus, in the case of the Station-to-Station protocol above, we assume that
the program corresponding to A performs preexp1 and storename1, and sends
a message to B. It then receives a message, ostensibly from B, and performs
the actions checkname1, retrievenonce1, exp2, decrypt1, checksig1, accept2. If
checkname1 fails, it halts. Otherwise it continues until it hits the next veri-
�cation event checksig1. If that fails, it halts. If not, it proceeds to accept2.
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After accept2, it executes the actions sign2 and encrypt2, and sends the message
resulting from these actions to B.

2.4 Cost Sets and Protocol Cost Functions

Now that we have a notation for participation in a protocol, we can use it to
compute the cost of participating in it. This is done by computing the cost of
individual events, and summing up over the costs in an appropriate manner.

De�nition 6 A cost set C is a monoid with monoid operation + with partial
order < such x+ y � x and x+ y � x, for all x and y in C.

Note in particular that x = x+ 0 � 0 for all x.
Examples of cost could be things like time or money, in which case + is simple

addition and the partial order is total. Or, it could be a vector corresponding
to di�erent limited resources, such as computation time, storage space, etc., in
which case we might want the partial order to be a lattice. Or, it could be a
rough estimate such as a division into \easy" or \hard," in which case x + y is
simply the maximum of x and y. Or, it might represent the ratio of resources
available to resources expended. Note that we do not even require that the
+ operation be commutative, so that the cost of expending resources x before
resources y could be greater than expending y before x.

Next, we need to specify a mapping from protocol events to costs.

De�nition 7 A function � from the set of events de�ned by an annotated Alice-
and-Bob speci�cation P to a cost set C which is 0 on the accept events is called
an event cost function.

For our analysis of the Station-to-Station protocol we do not have a very
precise notion of cost available. Thus, we will use the simplest possible cost
set, consisting of four members: expensive > medium > cheap > 0. We
assume that cryptographic operations involving exponentiation during the pro-
tocol (exp, checksig, sign) are expensive. All other cryptographic operations
(encrypt, decrypt, preexp) are medium, and all other events are cheap.

We now de�ne two functions based on event cost functions. One describes
the cost of processing a single message in a protocol. The other describes the
cost of a principal's reaching a given point in the protocol. These correspond
to the two ways in which we assume that an attacker can cause a defender to
waste resources; �rst by processing a bogus instance of a message inserted by the
attacker into a protocol run, and secondly by participating in a bogus instance
of the protocol with the attacker.

De�nition 8 Let P be an annotated Alice-and-Bob protocol, let C be a cost set,
and let � be an event cost function de�ned on P and C. We de�ne the message
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processing cost function associated with � to be the function �0 on veri�cation
events following the receipt of a message as follows:

If the line A ! B : O1; :::Ok k M k V1; :::; Vn appears in P , then for each
veri�cation event Vj :

�0(Vj) = �(V1) + :::+ �(Vj).

The message processing cost describes the cost of processing a message up
to an including a failed veri�cation event.

De�nition 9 We de�ne the protocol engagement cost function associated with
� to be the function � de�ned on accept events as follows:

If the line A ! B : O1; :::Ok k M k V1; :::; Vn appears in the protocol, where
Vn is the accept event, then:

1. If there are no lines B ! X : O0

1
; :::O0

k k M 0 k V 0

1
; :::; V 0

n such that Vn
immediately desirably-precedes O0

1
, then �(Vn) is the sum of all the costs

of all operations occurring at B desirably-preceding Vn;

2. If there is a line B ! X : O0

1; :::O
0

k k M 0 k V 0

1 ; :::; V
0

n such that Vn
immediately desirably-precedes O0

1
, then �(Vn) is the sum of the costs of

all operations occurring at B desirably-preceding Vn, plus the sum of the
costs of the O0

i,.

Note that the protocol engagement cost reects not only the cost of all events
up to and including the processing of the last message received, but the cost of
composing any message sent as the result of sending that last message.

For the Station-to-Station protocol, we note that protocol engagement cost
function is expensive for all accept events. For the �rst, the responder B must
compute the Di�e-Hellman key and sign a message. For the second, the initiator
A must check a signature, compute a Di�e-Hellman key and sign a message.
For the third, B must check a signature, as well as engage in all the previous
events up to that point.

For the message processing cost functions of the Station-to-Station protocol,
none is de�ned for the �rst message, since it contains no veri�cation events. For
the second the cost of B's checking the name is cheap, while the cost of B's
performing the signature is expensive. Likewise for the third message: the cost
of A's checking a name is cheap, while the cost of its checking a signature is
expensive.

2.5 Attackers and Attacker Cost Functions

Up to this point we have said very little about attackers. The attacker occupies
the no-man's land between the messages sent and the messages received. Basi-
cally, we assume that when a principal receives a message, it may be a legitimate
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message as described by the Alice-and-Bob speci�cation, or it may be a mes-
sage concocted by the attacker. We do not attempt to give any kind of formal
de�nition of an attacker, except to note that the attacker, like the legitimate
principals, concocts and sends its messages using a combination of events that
have cost. Thus we need to specify a set of attacker events and attacker costs.

Most of the protocol veri�cation literature depends upon a standard set of
assumptions about the attacker's capabilities. In our case, however, we leave it
up to the protocol analyst to specify what these capabilities are. All that we
will require is that each possible intruder action be assigned a cost as follows.

We use the following intruder cost function to compute the amount of e�ort
that the intruder has to expend to interfere with a protocol.

De�nition 10 We de�ne an intruder action to be an event engaged in by an
intruder that a�ects messages received by legitimate participants in a protocol.
We de�ne an intruder capability to be a set of actions available to an intruder.
Let C be a cost set. We de�ne � to be a function from the set of intruder actions
to C. We extend � to a function � from an intruder capability to C by de�ning
�(fx1; :::; xng) = �(x1) + :::+ �(xn). We call � an intruder cost function.

Note that we do not require the cost set used for the attacker to be the cost
set used for the defender. In order to make this distinction clear, we refer to
the two cost sets as the attacker and defender cost sets.

For the Station-to-Station protocol, we will let the attacker cost set be the
defender cost set augmented by two costs, very expensive and maximal, obeying
the ordering implied by their names. Very expensive is used for actions that may
be di�cult to implement (such as man-in-the-middle attacks), but which may
be worth it if the rewards are large enough. Maximal is reserved for events such
as cryptanalysis which are in most cases assumed to be infeasible but should
not be left out of the reckoning altogether.

We thus assume that the intruder capabilities and costs are as follows:

1. sending a legitimate message (Cost = the cost of computing the message);

2. forging a return address (Cost = cheap);

3. reading messages (Cost = medium);

4. creating a new message out of old ones (Cost = cost of deconstructing the
old messages + cost of creating the new ones);

5. disabling of a legitimate principal (Cost = medium: this requires another
denial-of-service attack, but since a disabled principal can be used more
than once, the cost can be amortized over a number of attacks);

6. substituting bogus messages for genuine ones in real time, as would be
done in a man-in-the-middle attack (Cost = very expensive);
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7. breaking cryptosystems (Cost = maximal), and;

8. inducing a principal to initiate communication with a bogus, disabled, or
dishonest principal (Cost = expensive to very expensive: it is not hard
to induce a principal to do this a few times, but it is probably di�cult
to induce this the number of times required to launch a denial-of-service
attack).

2.6 Fail-Stop Protocols

Now that we have a notion of protocol speci�cations, attackers, defenders, and
costs, we are able to show how we can modify Gong and Syverson's fail-stop
model to specify desired levels of resistance to denial of service. We will begin
by presenting the fail-stop model in terms of annotated Alice-and-Bob speci�-
cations. We will show how it can be modi�ed to reect cost to attacker and
defender, and how it can be used in the analyze a protocol's vulnerability to
denial-of-service attacks.

A fail-stop protocol is one that provides a certain degree of security against
attack. Thus, in order to de�ne a fail-stop protocol, we need �rst to say what
an attack is. But an attack describes a behavior of the implemented protocol
that deviates from its desired behavior. We have shown how an Alice-and-Bob
speci�cation can be used to described desired behavior. Now what we need is a
way to describe deviations from that behavior.

Recall that we assumed that there exists some mapping of Alice-and-Bob
speci�cations to programs associated principals such that each event maps to a
program fragment, and that fragments belonging to the same program execute
in the order speci�ed by the desirably-precedes order induced by the speci�ca-
tion, while we make no assumptions about the order of execution of fragments
corresponding to di�erent programs. We use this idea for the following de�ni-
tion.

De�nition 11 We say that an event as occurred if the program fragment cor-
responding to it has executed. We say that M has been interfered with if either
the event B receives M from A occurs but some event desirably-preceding it has
not, or the event B receives M from A has already occurred.

Note that, as we have said previously, the fact that B receives M from A

occurs does not mean the B actually received M or any other message from
A. It simply means that B received a message at the point at which it was
expecting the message M from A, and it is ready to perform a set of tests to
determine whether the message was genuinely M and was sent by A. Thus
although we use the term \interfered with" to be consistent with the language
in [9], we note that it covers not only messages that were tampered with, but
fake messages generated by an intruder.
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We now give the de�nition of fail-stop from [9], modi�ed slightly to take into
account our slightly di�erent de�nition of an event.

De�nition 12 An Alice-and-Bob speci�cation of a cryptographic protocol is
fail-stop if, whenever a message is interfered with, then no accept event desirably-
after the receiving of that message will occur.

We now present our modi�ed version of fail-stop. Since we need it to incor-
porate the notion of the e�ort involved in interfering with messages, we use the
following attack cost function to compute the amount of e�ort that we want the
intruder to have to expend to interfere with a protocol.

De�nition 13 Let � be a function from the set of events de�ned by an anno-
tated Alice-and-Bob speci�cation P to a cost set C. We refer to � as the attack
cost function. We say that P is fail-stop with respect to � if, for each event
E in the system, if an intruder interferes with any message desirably-preceding
E, then neither E nor any events desirably-after E will occur, unless the cost
of the capabilities the intruder uses in interfering with the message or messages
is at least �(E).

If we assume the cost of exercising the usual Dolev-Yao set of intruder ca-
pabilities is some value M , and we let �(E) > M whenever E is an accept
event, and let it be zero for all other events, then the reader can verify that our
de�nition of fail-stop is equivalent to Gong and Syverson's.

The question we are left with, of course, is which � a protocol analyst would
want to use. Clearly, it should bear some relation to the defender cost functions.
We make this idea more precise below.

De�nition 14 Let C be a defender cost set, and let G be an attacker cost set.
We de�ne a tolerance relation to be the subset of C �G consisting of all pairs
(c,g) such that the protocol designer is willing to tolerate a situation in which an
attacker cannot force a defender to expend resources of cost c or greater without
revealing its identify or expending resources of cost g or greater. We say that
(c0,g0), is within the tolerance relation if there is a (c,g) in the relation such
that c0 � c and g0 � g.

In other words, the tolerance relation reects the result of performing a risk
analysis in which an estimate of the attacker's resources and its willingness
to expend them is traded o� against an estimate of the defender's available
resources.

We can now describe the procedure for evaluating whether or not a protocol
is secure against denial of service using the following steps:

1. Decide what you assume the various capabilities of the intruder can be,
and what your intruder cost function is.
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2. Decide what your tolerance relation is: how much are you willing to spend
to provide a certain level of security, and how much insecurity are you
willing to put up with given a certain amount of cost?

3. Determine the minimal attack cost functions with respect to which the
protocol is fail-stop.

4. For each attack cost function � de�ned in Step 3, determine that:

a) If E1 is an event immediately preceding a veri�cation event E2, in a
line of a protocol, then (�0(E2),�(E1)) is within the tolerance relation.
This means, that, if M is the message received in the line in which E1

and E2 appear, the cost of getting to the point where E2 succeeds or fails
is �0(E2), and any intruder will have to expend cost �(E1) in order to
successfully interfere with M after E1 has �nished executing.

b) If E is an accept event, then (�(E),�(E)) is within the tolerance
relation.

Note that Step 4a allows us to reason about the ability of a protocol to
thwart an intruder who is only willing to expend a certain cost and who tries
to mount a denial-of-service attack by causing a legitimate principal to waste
resources processing a message before it has been able to verify that it could
not have been forged by such an intruder. Step 4b allows us to reason about
the ability of a protocol to thwart an intruder who is only willing to expend
a certain cost and who tried to mount a denial-of-service attack by causing a
legitimate principal to waste resources participating in a protocol up to receiving
a particular message and responding to it, before it has been able to verify that
that message could not have been forged by such an intruder.

We show how this procedure would be applied to the Station-to-Station
Protocol as follows.

We �rst compute the attack cost functions and the protocol engagement cost
functions for the accept events.

Clearly, since the �rst message is not authenticated at all, it protects only
against a very weak intruder, so at best we can take �(accept1) to be is the
cost of creating and sending the message. This at �rst appears to be medium,
but in order to get this message accepted, the intruder does not have to include
an exponentiated value. All it needs to do is substitute a �eld taking up the
appropriate amount of space, although it may have to take some care to be able
to pass checks for obviously bogus values such as are recommended in [4]. Thus
the cost is actually cheap. On the other hand, �(accept1) is expensive, since
B is required to perform expensive exponentiation and computation of digital
signatures as a result of accepting the message.

We can take �(accept3) to be maximal, in the sense that we have veri�ed
using the NRL Protocol Analyzer that an intruder expending less than maximal
cost according to our model cannot break the protocol. (Note, however, that
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this is not the same as a full-scale proof that breaking the protocol is equivalent
to breaking the underlying crypto-systems.)

What is surprising, however, is �(accept2). We would expect this to also
be maximal, but as a matter of fact it is only very expensive, as it involves a
man-in-the middle attack. As was shown by Lowe in [14], the event accept2 is
vulnerable against the following attack, where I is the intruder, and IZ is the
intruder impersonating Z:

1. A! IB : �XA

2. IC ! B : �XA

3. B ! IC : �XB ; EK(SB(�
XB ; �XA))

4. IB ! A : �XB ; EK(SB(�
XB ; �XA))

5. A! IB : K(SA(�
XA ; �XB ))

At this point A is convinced that it is sharing a key with B, although B

knows nothing about this; if B received A's �nal message it would reject it,
since it is expecting a response from C. On the other hand, �(accept2) is
merely expensive.

We now compute the attack cost functions and the message processing cost
functions for each veri�cation event.

The �rst veri�cation event is checkname1. Since no veri�cation is done
before the name is checked, the associated � is cheap. However, since no event
except the reception of the message precedes checkname1 at that line, and the
cost of checkname1 is itself cheap, the pair (c,g) computed should be well within
any tolerance relation.

The next veri�cation event is checksig1. The message processing cost
�0(checksig1) is expensive. The event appearing immediately before checksig1
is decrypt1. In order to spoof decrypt1, the intruder has at least to be able to
induce A to initiate contact with a bogus, dishonest, or disabled B. The in-
truder can then construct a bogus message; for this the only capability required
is the ability to read A's message, and possibly to fake B's return address. Thus
�(decrypt1) is at least expensive to very expensive. This may or may not be
within a protocol designer's tolerance relation.

The next veri�cation event is checkname2. The event immediately preced-
ing it is B's receipt of the third message in the protocol. Again, the mes-
sage acceptance cost �0(checkname2) is cheap, so no matter what the value of
�(A! B :M), it should be within most tolerance relations.

Finally, the last veri�cation event is checksig2. Again, the message accep-
tance cost of checksig2 is expensive. In this case, however, the attacker has two
choices for tricking the B into applying checksig2 to a bogus message. First of
all, it could attempt to hijack an existing session between A and B in which A

sent a legitimate �rst message. The cost of this would be expensive, and thus
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the resulting pair (c,g) would be within most tolerance relations. The attacker's
other option, however, would be to impersonate A from the beginning. Since
no veri�cation is made on A's �rst message to B, this would only require the
attacker to be able to spoof checkname2, and possibly to disable A prior to
executing the protocol. Thus �(decrypt2) is at most medium, and the resulting
(c,g) = (expensive, medium) is probably not within most tolerance relations.

Thus the Station-to-Station protocol, as it stands, is vulnerable to denial of
service attacks in several places. In the �rst message, an intruder who is capable
of doing nothing more than sending messages could send a bogus message and
cause the responder to waste resources responding to it. Likewise, since the only
cheap interim checks leading up to the �nal expensive check on the last message
are weak, an intruder who is capable of faking return addresses and diverting
messages could cause either the responder to waste resources in processing a
bogus message. Finally, though less seriously since it is the most expensive of the
attacks, an intruder could mount Lowe's attack and convince an initiator that
it is sharing a key with a responder when it does not, and when the responder
is not even expecting a message from the initiator.

There are a number of ways in which this protocol could be strengthened
against denial of service attacks. First, a cookie exchange could be done ini-
tially, to introduce some weak authentication before the major message exchange
starts, as is done in IKE [5], which uses a protocol based on the station-to-station
protocol. Secondly, if cookies are included in second and third messages, check-
ing them could provide weak authentication for these as well (as is also done
by IKE). Weak authentication could also be provided by including both �XA

and �XB in the second and third messages, so that either party Y could check
for the presence of �XY before proceeding with the more expensive veri�cation
steps. Finally, Lowe's attack could be prevented by including the identity of the
intended receiver in the signed part of the message, as is recommended by Lowe
in [14].

3 Applicability of Existing Tools and Models

In this section, we consider how some of the existing tools and methods could
be applied within our framework.

We begin with belief logics. To look at them, we would not expect belief
logics such as BAN [3] to be very useful within our framework. They use an
implicit model of the intruder, and guarantee properties such as freshness and
authentication, not immunity against intruders expending various amount of
e�ort. However, like our framework, BAN and similar logics are used to analyze
protocols incrementally; one sees what degree of security is provided by each
message as it is processed. And, although the properties guaranteed by these
logics are currently cast in terms of beliefs in the properties of keys and messages,
not properties of the intruder, there does not seem to be any inherent reason
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why they could not be recast as statements about what capabilities the intruder
is supposed to have. For example, consider a message that contains a fresh sub-
element, such as a cookie. That message is authentic if we assume the the
intruder is not able to read and modify messages in real time. On the other
hand, a signed message containing a fresh sub-element is authenticated in the
face of a stronger intruder.

We next consider tools that make use of state exploration techniques in some
form or the other. These include model checkers such as FDR/Casper [15] or
Mur� [22], specialized tools such as the Interrogator [20] that provide much of
the same capability but are �ne-tuned for cryptographic protocol analysis, and
tools such as the NRL Protocol Analyzer [17] that combine state exploration
with a limited theorem-proving capability. What all of these tools have in com-
mon is that at some point their designers implemented the standard intruder
model as part of the tool. In [16], in which we modeled denial-of-service in
terms of intruders of di�erent strengths, we recommended replacing this imple-
mentation of the intruder model with implementations of a number of models
representing intruders of di�erent strengths, and to verify di�erent goals of the
protocol with respect to the appropriate model. However, with the cost-based
framework described in this paper, it may make more sense to use a single in-
truder model, but to keep a running tally of the cost involved as an attack is
constructed. Attacks that exceed the recommended costs would be ignored. A
similar tally might also be appropriate for use in theorem-proving approaches
such as [23] which also rely upon an explicit model of the intruder, although
they do not compute attacks directly. Note that in some cases computing the
cost could be a little tricky, especially in the case of such intruder actions as
man-in-the-middle attacks which describe intruder behavior over several di�er-
ent states. However, this should still be easier than implementing a number of
di�erent intruder models.

The fact that we are modeling the security of a protocol in terms of an
intruder of limited capacity also invites comparison with the vast amount of
work that has been done using limited-capacity models in the cryptographic
literature. In these models a protocol or algorithm is proven secure in face of an
intruder who has limited computational capacity, for example, an intruder who is
only able to solve polynomial-time problems. The main di�erence between these
models and ours is that these models generally only concern restrictions on the
computational capacity of the intruder and use one set of assumptions to reason
about a given protocol, while our framework includes restrictions on the capacity
to perform various network operations and uses di�erent sets of restrictions to
reason about di�erent points in a protocol's execution. However, a closer study
of the ways in which assumptions about the computational capacity are used
to reason about protocol security, particularly in work such as that of Bellare
and Rogaway [1] and Lincoln et al., [13], which analyzes protocols similar to the
ones we are considering in our work, would probably yield results that could be
used to enhance our framework.
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Finally, we consider the applicability of high-level protocol description lan-
guages, such as CAPSL [21] and Casper [15]. These languages are based on
the popular Alice-and-Bob notation, so the most straightforward thing would
appear to be to include the annotations that we have used in building our frame-
work. But, as a matter of fact, this may not be necessary. Translators for these
languages commonly infer the necessary operations directly from the speci�ca-
tion; there is no reason that they should not also be able to derive a sequence of
such operations that is optimal with respect to increasing cost, assuming that
they are given the cost of each type of operation. Thus, all that would be needed
to be added to the high-level speci�cation would be an estimate of the cost of
each type of operation; these could even be built into the translators when they
are well understood. A protocol designer might also want to specify the desired
attack cost function for various protocol subgoals; this could be built into the
speci�cation as an annotation.

4 Conclusion

We have developed a framework for reasoning about network denial of service,
and indicated how existing tools and methods could be modi�ed for reasoning
within this framework. But there is still much work that remains to be done,
in particular in the development of more realistic and sensitive cost functions.
We used a rather crude and ad hoc cost function in our analysis of the Station
to Station protocol, simply in order to illustrate how our framework could be
applied. However, enough is known about the di�culty of the various operations
used in executing and attacking a cryptographic protocol that it should be
possible to re�ne it considerably. We expect that the main challenge will be in
comparing the di�culty of di�erent sorts of operations, e.g. how do we compare
the di�culty of diverting a message with the di�culty of computing a digital
signature? This will probably be implementation-dependent and require careful
analysis, breaking each action down into its component parts. Once this work
is done, however, it should easily �t into our framework.

There are several other issues that remain to be explored. One is the use of
variable levels of defenses. In many cases, it is becoming the practice to use one
level of veri�cation when the environment is believed to be benign, and another
more stringent, level of veri�cation when a system is believed to be other attack.
For example, in the benign case authentication checks may be made on only a
portion of the system, while in the case that the system is under attack more
rigorous authentication checks may be used. We can model this by using two
di�erent tolerance relation, one for the benign situation (in which we require
security only against weak attackers), and one in the attack situation (in which
we require security against strong attackers). It should then be possible to
evaluate the two di�erent authentication policies using the two di�erent attack
scenarios.
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We have a �nal comment to make about applying our framework to protocols
that do not use strong authentication. In this paper we have mainly looked at
protocols that use some form of strong authentication to achieve their goals, and
the framework we present is derived from models used to reason about protocols
that use strong authentication. However, authentication is a useful method for
protection against denial of service attacks even for protocols for which it is not
practical against cryptography. For example, one of the most common form of
attack is simply to ood a channel with messages. This is can actually be seen
as a denial of service attack on the router, and thus could be defended against,
at least in part, by requiring the router to perform lightweight authentication.
But even the simplest checks can have a nontrivial cost to a router. Thus it is
conceivable that a framework like ours could be useful in analyzing the e�ect
of using di�erent types of authentication on even low-level protocols that use
light-weight authentication measures. We plan to investigate these issues in our
further work.
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